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Two Points Blow-up in Solutions of the Nonlinear
Schrodinger Equation with Quartic Potential on R
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We consider the blow-up problem for the nonlinear Schrodinger equation with
quartic self-interacting potential on R. We exhibit a class of initial data leading
to the blow-up solutions which have at least two L2-concentration points.

1. INTRODUCTION AND MAIN RESULTS

This paper concerns the nonlinear Schrodinger equation with quartic self-
interacting potential on R:
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We associate this equation with initial data from the usual Sobolev space
H l ( R ) :
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As noted in ref. 5, the study of this equation may bring us insight into the
behavior of solutions of the 2 + 1 space-time nonlinear Schrodinger equa-
tion with nonlinear term |u|2 u, which is the well-known model of a laser
field propagation in a nonlinear medium (see, e.g., ref. 22, and see also
refs. 1 and 6 and references therein). In fact, these two equations have com-
mon mathematical properties; the exponent in the nonlinear term called
critical (see, e.g., refs. 2, 9, 18, and 19).

In what follows, we shall use the following notations: D = d/dx and
<f, g> = fK f(x) g(x) dx, where f(x) means the complex conjugate of f(x).
We also abuse the notation that D is also used to denote the partial
derivative d/dx.

We summarize here the basic properties of this Cauchy problem
(1.1)-(1.2) (see, e.g., refs. 3 and 4). The unique local existence of solutions
is well known: for any u 0 e H l ( R ) , there exists a unique solution u(t, x) in
C([0, Tm); H 1 ( R ) ) for some Tme(0, oo] (maximal existence time; for sim-
plicity, we shall consider the forward problem only), and u(t) satisfies the
following three conservation laws of L2, the energy E and the momentum
P in this order:
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for t e [ 0 , T m ) , where ||.|| and ||.||q denotes the L2 norm and Lq norm
respectively. Furthermore we have the following alternatives: Tm = oo or
Tm< oo and lim,^^ | |Vu( t ) l l = oo (blow-up). For the existence of blow-up
solutions, see refs. 2, 12, 15, 16, and 18.

Our purpose in this paper is to exhibit a class of initial data leading
to the blow-up solution to (1.1)-(1.2) which have, at least, two L2-concen-
tration points.

In order to state our result precisely, we need an auxiliary W3 > 0 0(R)
odd function; we here introduce it following refs. 15 and 16, as follows:



We suppose that the initial datum u 0 e H l ( R ) satisfies the following condi-
tions:

(a) u0 is an odd or even function.

(b) u0 has, at least, negative energy:
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Using this </>(£), we put

for given a > 0 and R > 0 such that

where (j>R(x) = R<l>(x/R). Notice that

and <t>R, a = (x±a)2 if |x±a| <R. One can easily verify that

We put

(c) For some n > 0, we have



(d) The energy is sufficiently negative:

Although the condition (b) is included in (d), we dare to state it for
latter convenience. We note that these inequalities in (c) and (d) persist
along the time evolution, u(t), by the L2 conservation law (1.3) and the
energy conservation law (1.4).

We need one more condition (e) below. To state it, we introduce here
the following two variational values Nc and mR. The first one is the well-
known critical L2 norm(19) (see Remark 1.1 below):

For this, see ref. 19 (see also ref. 11). By (1.20) and the conservation laws
(1.3) and (1.4), if \\u0\\

2<Nc, the solution of (1.1)-(1.2) exists globally in
time. Furthermore, now we know that every blow-up solution concentrates
its L2 mass which, at least, amounts to Nc at some point (see refs. 8, 9, 20,
and 21).
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The second one is its local analogue(12) (see also ref. 14):

where

Remark 1.1. (1) The variational value Nc is also characterized as
follows:

and we know that there exists a positive function Q ( x ) e H l ( R ) such that



Actually, this estimate from below enable us to construct the blow-up solu-
tions which we want. Unfortunately, we do not know whether a similar
estimate holds for higher dimensional critical case except the radially sym-
metric case (see ref. 12). We shall prove (1.23) in Section 2 as Lemma 2.1.

Now we can state the condition (e):

(e) The initial datum u0 is localized around the support of VR , a:
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(2) Such a kind of variational problem as (1 .18 ) was first introduced
in ref. 12 (see also ref. 14) to prove the nonexistence of negative energy
global-in-time solution. The problem (1 .18) is a variation of the one intro-
duced there. In fact the analysis of this paper is closely related to
refs. 12-14 and also refs. 9 and 10. We can show as in a similar way to the
proof of Lemma 3.1; ref. 12 (see also Section 2; ref. 14) that

Our main results are the following Theorems 1 and 2:

Theorem 1. Let a>0 and R>0 be arbitrary such that we have
(1.9). Under the conditions (a)-(e), the corresponding solution u(t) of
(1.1)-(1.2) blows up in a finite time, and it concentrates its L2 mass at,
at least, two points. They are located in the intervals [ — a — R , — a + R]
and [a — R, a + R]. More precisely, defining the following quantity A:

we have

and we have that, for any e e(0, 1), there are constant r 0 >0 and t0>0
such that, for any t e [t0, Tm) and for any r^>r0, it holds that

for some



Remark 1.2. The quantity A was introduced in ref. 8 to study the
L2 concentration phenomena of blow-up solutions. We may say that A
measures the largest singularity. The assertion of (1.25) was already proved
(for any dimensional critical case) in refs. 8 and 9. By the proof of ref. 10,
we can see that y( •) can be taken as a right-continuous function in
t e [t0, Tm). Moreover, in our case, if A >| ||w0l!2» then we can take y ( . ) as
a continuous function. Especially, if ||w(0)||2 < 4NC, then y ( . ) i s continuous.

Theorem 2 tells us that the L2 norm amounting to A ( ^ N C ) is going
to concentrate around each point y(t) and — y(t). We can state more
precisely the limiting profile of the blow-up solution:

Theorem 2. Let a>0 and R>0 be arbitrary such that we have
(1.9). Under the conditions (a)-(e), the corresponding solution u(t) of
(1.1)-(1.2) blows up in a finite time, and it concentrates its L2 mass at,
at least, two points. They are located in the intervals [—a — R, —a + R]
and [a — R,a + R]. More precisely, there exist:

(i) a time sequence {sn} such that SB| Tm as n -> oo;

(ii) a family of finite L-points { p j }
L = 1 < = R + such that \pj — a\^R

( j = 1 , 2 , . . . , L ) ;

(iii) a family of positive constants { C j }
L , such that Cj^Nc

( j = 1 , 2 , . . . , L ) ;
(iv) a positive measure u e Si', where 36' is the dual of 36 = C(R) n

T ao(n\L< \<&),

for which we have, as n -> oo,

The formula (1.28) says that there are, at least, two L2-concentration
points pl and — p 1 . The measure u in (1.28) may have a singular part.
However, it is considered to be the limit of the part called "shoulder" in the
blow-up solution, which is of different nature from the other part producing
the Dirac measures in (1.28). For the precise description of the asymptotic
behavior of it, see Theorem 2.4 and Corollary 2.5 in Section 2. The assertion
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in the weak topology of measures, that is, weakly* in 3$', where 8p is the
Dirac measure at p e R. Furthermore we have:



(1.29) is proved in refs. 13 and 14, which shows that u is not a finite sum
of Dirac measures. We note that if ||u0||

2 <4Nc, we have L = 2 in Theorem 2.
It is worth while stating the following remarks:

Remark 1.3. (1) We note that the set of initial data satisfying the
conditions (a)-(e) is, of course, not empty. Let f ( x ) be any C£°(R) function
whose support is included in the ball {x e R: \x <R}. If necessary, multi-
plying it by a positive constant, we may assume that £ ( f )<0 . Now we
consider the scaled function f^(x) = A l / 2 f ( A x ) for A>0 , and put u0(x) =
A(x — a) +fi(x + a). First, we take n >0 so that we have the condition (c).
Note the following facts: ||u0|| = 2 ||/J|« (1 ̂ q < oo), E ( u 0 ) = 2/t2£(f).
Especially, ||w0||2 = 2 ||f||2. Choosing X large enough and replacing n by
I2n, we have both the conditions (d) and (c). By this choice of n, we can
assume ( 1 / n 0 ) ||Vu0||

2 is bounded for A>0 . Hence, if necessary, taking A.
large further, we have the condition (e). Consequently, we have obtained
the desired initial datum. We can add some function g e H 1 (R ) of positive
energy such that
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For these newly defined functions, we also have (1.11)-(1.14) with u = 0.
Notice that

to fi(x — a) + fi(x + a) without destroying the conditions (c), (d) and (e),
taking R>0 large enough (if necessary).

(2) In the above construction of u0, we can replace f e C£°(R) by a
rapidly decreasing Cx functions such as Q. For the properties of Q, see,
e.g., ref. 19. Some numerical computations treat such an initial datum as
uo(x) = ZL=1 c jQ(x + aj) for some constants c,>0 (see, e.g., refs. 1 and 4).

(3) In ref. 7, the blow-up solution which has exactly k-given blow-up
(L2 concentration) points is constructed. But the argument there is like a
construction of the "wave operators," and does not specify the initial data.

For the latter use, we define VR,a, <£/?,„, QR,a for a = 0. In this case, we
put
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This paper is organized as follows.
In Section 2, we prove Theorems 1 and 2.
In Section 3, we consider a generalization of Theorems 1 and 2.

2. PROOF OF THEOREMS 1 AND 2

Our proof of the nonexistence-of-global-solution part is a variant of
Section 3, ref. 12. The important thing is to introduce the variational value
(1.23) which owes its inception to ref. 12. For the formation-of-singularities
part, we shall use the result of refs. 9 and 10.

Although we already know that, under the condition (b), the corre-
sponding solution blows up in a finite time Tm (see refs. 12 and 16), our
argument here includes the proof of Tm < oo.

We begin with the proof of (1.23):

Lemma 2.1. Consider the following variational value mR:

Proof. As mentioned in Section 1, the proof here is almost the same
as in Lemma 3.1, ref. 12. For the readers convenience, we give here the
proof of it. First note that D ^/QR a eL c o(R): Indeed; since we have by
(1.6) that

Then we have

and that



so that we obtain

Nonexistence of global-in-time solution. We shall prove that if the
initial datum u0 satisfies conditions (c), (d) and (e), the solution of
(1.1)-(1.2) blows up in a finite time. The following is a key identity of our
proof here, which is a substitute of the virial identity used in refs. 2, 18,
and 22.

Lemma 2.2. We assume (1.19). The solution u(t) of (1.1)-(1.2)
satisfies that, for t e [0, Tm),
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we have from (1.9) that

Recall the weighted interpolation inequality (see, e.g., refs. 12 and 16),

From (2.6) and the definition of £R, we get

Consequently we have, by the condition (c), that
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This identity also holds true for the case of a = 0 with yR,0 and <PR Q

defined in (1.31) and (1.32) respectively.
For the proof, see refs. 12 and 16.
Using (2.10), we can prove:

Lemma 2.3. We assume (c), (d) and (e). Let

Then we have

Thus it follows that

Proof. Suppose that T0<Tm. By the L2-continuity, we have
f«R a | u (T 0 , x ) | 2 dx = min(mR , Nc). By the definition of mR and the H1-con-
tinuity, we have

The third term (III) of right hand side of (2.10) can be easily handled; we
have by (1.11) that

Thus, we have by the condition (d) that, for t e [0, T0],



In the last inequality, we have used the fact that VR, a2 ^ <PR, a. From
(2.16), we have

This implies that <$/?,„, |u(t) | 2> becomes negative in finite time. There-
fore, if we suppose Tm = co, then we reach a contradiction. Thus we have
proved that, under the conditions (c), (d) and (e), the solutions of
(1.1)- (1.2) blows up in a finite time.

Proof of Theorem 1. Now we assume the condition (a) in addition
to (c), (d) and (e). We note that if the initial datum u0(x) is even (odd),
then the corresponding solution u(t, x) is also even (odd) with respect to
x e R for each t e[0, Tm).

In refs. 8 and 9, we proved that, for every blow-up solution of (1.1),
the quantity A defined by (1.24) satisfies (1.25). Therefore, noting the

Dividing both sides of (2.16) by R2, we obtain from the condition (e) that

Consequently, by the condition (d) (definition of n0) , we obtain

so that it follows that

which contradicts the definition of T0.
This lemma tells us that the solution u(t) in consideration is well-

localized around the support of *FR, a, and this is the heart of the matter
in the entire proofs of Theorems 1 and 2.

By the definition of mR, we have

Blow-up Solutions of Nonlinear Schrodinger Equation 449



450 Nawa

localization property proved in Lemma 2.3, we have (1.26) with (1.27) by
the definition of A and the symmetry of the solution in consideration.

Proof of Theorem 2. Next, we shall prove Theorem 2. As in the
same way to the proof of Theorem 1, ref. 11 (see also ref. 12), we can show
the following:

Theorem 2.4. Suppose that u0 satisfies condition (a) and the solu-
tion u(t) of (1.1)-(1.2) blows up in a finite time (or grows up at infinity).
Let {tn} be any sequence such that, as n-»• oo,

For this {tn}, we put

and, we consider the scaled functions

for t e [ — (Tm — t n ) /%%, t„/%%). Then there exists a subsequence of {un} (still
denoted by {un}), which satisfies the following properties: there exist

(i) a finite number (say L) of nontrivial solutions ul, u2,..., UL of
(1.1) i n ^ ( R + ; H 1 ( R ) ) with

for j= 1, 2,..., L, and

(ii) sequences {y1}, {y2},..., {yL} in R+ such that limn ^ \YJH-y*\ = cG
( j = k ) , such that, for any T>0,
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Here, the each sign ± in front of the second £'s in (2.25)-(2.28) is taken
to be — ( +) if u0 is even (odd). Furthermore we have

From this theorem, we can show (see refs. 13 and 14):

Corollary 2.5. Under the same assumptions, definitions and nota-
tions of Theorem 2.4, we have:

Here, each sign above is taken to be — (+) if u0 is even (odd). Further-
more we have, for any T>0 and any fe@,
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where q>n(t, x) is the solution of the following free Schrodinger equation:

where, for j = 1, 2,..., L,

with
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and

From (2.36), we see that the family of "probability measures"
{ \ u ( t , x)\2 dx}t&0 is tight. Hence, since we have (2.35), we can show (1.25)
along a subsequence of { s n } defined by

where {tn} is given by (2.22). Notice that

Theorem 2.4 is almost the same as Theorem 1, ref. 11. The novelty is
only the fact that the "singularities" uj

n (j= +1, ±2,..., ±L) appear sym-
metrically on R, which is a consequence of the condition (a). The formula
(2.30) is just a rephrase of (2.27). For (2.34), see ref. 13, which can be
obtained by the proof of (2.27). The important thing is the assertion (2.35),
which is derived from Lemma 2.3 together with the fact that \\uj\\2^Nc

which is a conclusion of the fact that E(uJ)=Q (see (1.17); the definition
ofAg.

On the other hand, in refs. 12 and 14, we proved the following:

Lemma 2.6. We suppose the condition (b). Then, the blow-up
solution of (1.1)-(1.2) satisfies the following property: there exists m * > 0
such that for any m e(0, m * ) , there exists a constant rm>0 such that

Furthermore, we have:



Remark 2.1. The proof of Lemma 3.1, ref. 12 (see also Theorem D,
ref. 14) is the model of the argument performed in this paper; one can
prove Lemma 2.6 by modifying the proofs of Lemmata 2.1 and 2.3 in this
section. In that proof, we use the identity (2.10) with a = 0 such as men-
tioned in Lemma 2.2.

It remains to prove (1.29), that is,

Although, as mentioned in Section 1, we already proved this in refs. 13
and 14, we give the proof here. It suffices to prove the following:

On the other hand, we have by the tightness of "probability measure"
{\u(sn, x)\2 dx}n^i that, for an enough subsequence of {sn} (still denoted
by the same letter), that
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By (2.37) and (2.38), we have from (2.10) with a = 0 that there are positive
constants C1 and C2 such that, for any r>rm,

Suppose the contrary that \x\ u0$L2(R). Then we have from (2.42) that

where

Taking r \ oo in (2.44) leads us to a contradiction, since <£r 0-» |x|2 as
r f co and we have



3. FURTHER RESULTS AND COMMENT

In this section, we consider the generalization of Theorems 1 and 2.
The question is: Can we give a class of initial data which give rise to blow-
up solutions with, at least, three L2-concentration points? Unfortunately,
we cannot give an answer to this problem. However, we have a kind of
"controllability" theorem for blow-up points.

We shall consider a class of "multi lump" (say N-lump) initial data. As
it will turn out below, we may call the class of initial data considered in
Section 1 a set of symmetric 2-lump initial data.

Now take any N-distinct points a = { a l , a2,..., aN} from R; we assume
al<a2< ••• <aN and ak = 0 for some k e {1, 2,..., N} for simplicity. We
choose R > 0 such that
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equivalently

If N= 1, we can take R>0 arbitrarily. Using </>(£) defined by (1.6), we put
(as in Section 1), for the above R>0,

Notice that

As in (1.11)-(1.24), we have:



We put

To state the third condition corresponding to (e) in Section 1, we
introduce:
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The N-lump initial datum u0 e H1(R) is defined to satisfy the following
three conditions (a), (/?), and (y):

(a) For some n > 0, we have

(/?) The energy is sufficiently negative:

As in the same way to prove Lemma 2.1, we obtain

Now we can state the third condition (y):

(y) The initial datum u0 is localized around the support of VR ,:

where



As in the same way to prove Theorems 1 and 2, we can show the following
theorem:

Theorem 3. Under the conditions (a), (ft) and (y), the correspond-
ing solution u(t) of ( 1 . 1 )-(1.2) blows up in a finite time, and it concentrates
its L2 mass, at least, in one of the intervals [aj — R, aj+ R] for j= 1, 2,..., N.
More precisely, there exist:

(i) a time sequence {sn} such that sn f Tm as n -> oo;

(i i) a family of finite L-points {p1}L
=1 <= IR such that
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( i i i ) a family of positive constants {C1}L I such that C,^NC

(l=1,2,..., L);

( iv) a positive measure (ie.W,

for which we have, as n —> oo,

in the weak topology of measures. We note that if x u0 does not belong
to L2(R), then we have

Furthermore: for any £ e(0, 1), there are constant r0>0 and j0 e {1, 2,..., N}
such that we have, for any r^r0 and for some sequence {yn}',

that

for sufficiently large n e N.
Hence, taking N = 1 and R > 0 sufficiently small, we can almost con-

trol the L2-concentration points, although the number of singularities, L, in



Theorem 3.1 may be larger than two. If we take a = { — a, 0, a} for some
a > 0 and if u0 is an even or odd function made from three lumps which
can be constructed as in Remark 1.3, then the origin of R is possibly an
L2-concentration point. However, we do not know exactly which initial
datum of such a shape gives rise to the blow-up solution with 0 e R as its
L2-concentration point.

We conclude this paper with the following remark: the arguments here
work for the nonlinear Schrodinger equation ( 1 . 1 ) on the circle (whose
blow-up problem is considered in refs. 5 and 17), so that we can prove the
analogous results to Theorems 1, 2 and 3. These will be discussed in a forth
coming paper.
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